長(zhǎng)江有色金屬網(wǎng) > 有色知識(shí) > 冬季鋰電池容量會(huì)變低不耐用,為何鋰電池“害怕”低溫?

冬季鋰電池容量會(huì)變低不耐用,為何鋰電池“害怕”低溫?

   來源:

鋰離子電池自從進(jìn)入市場(chǎng)以來,以其壽命長(zhǎng)、比容量大、無記憶效應(yīng)等優(yōu)點(diǎn),獲得了廣泛的應(yīng)用。鋰離子電池低溫使用存在容量低、衰減嚴(yán)重、循環(huán)倍率性能差、析鋰現(xiàn)象明顯、脫嵌鋰不平衡等問題。

  鋰離子電池自從進(jìn)入市場(chǎng)以來,以其壽命長(zhǎng)、比容量大、無記憶效應(yīng)等優(yōu)點(diǎn),獲得了廣泛的應(yīng)用。鋰離子電池低溫使用存在容量低、衰減嚴(yán)重、循環(huán)倍率性能差、析鋰現(xiàn)象明顯、脫嵌鋰不平衡等問題。然而,隨著應(yīng)用領(lǐng)域不斷拓展,鋰離子電池的低溫性能低劣帶來的制約愈加明顯。

  據(jù)報(bào)道,在-20℃時(shí)鋰離子電池放電容量只有室溫時(shí)的31.5%左右。傳統(tǒng)鋰離子電池工作溫度在-20——+55℃之間。但是在航空航天、軍工、電動(dòng)車等領(lǐng)域,要求電池能在-40℃正常工作。因此,改善鋰離子電池低溫性質(zhì)具有重大意義。

  制約鋰離子電池低溫性能的因素

  1、低溫環(huán)境下,電解液的黏度增大,甚至部分凝固,導(dǎo)致鋰離子電池的導(dǎo)電率下降。

  2、 低溫環(huán)境下電解液與負(fù)極、隔膜之間的相容性變差。

  3、 低溫環(huán)境下鋰離子電池的負(fù)極析出鋰嚴(yán)重,并且析出的金屬鋰與電解液反應(yīng),其產(chǎn)物沉積導(dǎo)致固態(tài)電解質(zhì)界面(SEI)厚度增加。

  4、低溫環(huán)境下鋰離子電池在活性物質(zhì)內(nèi)部擴(kuò)散系統(tǒng)降低,電荷轉(zhuǎn)移阻抗(Rct)顯著增大。

  對(duì)于影響鋰離子電池低溫性能因素的探討

  專家觀點(diǎn)一:電解液對(duì)鋰離子電池低溫性能的影響最大,電解液的成分及物化性能對(duì)電池低溫性能有重要影響。電池低溫下循環(huán)面臨的問題是:電解液粘度會(huì)變大,離子傳導(dǎo)速度變慢,造成外電路電子遷移速度不匹配,因此電池出現(xiàn)嚴(yán)重極化,充放電容量出現(xiàn)急劇降低。尤其當(dāng)?shù)蜏爻潆姇r(shí),鋰離子很容易在負(fù)極表面形成鋰枝晶,導(dǎo)致電池失效。

  電解液的低溫性能與電解液自身電導(dǎo)率的大小關(guān)系密切,電導(dǎo)率大電解液的傳輸離子快,低溫下可以發(fā)揮出更多的容量。電解液中的鋰鹽解離的越多,遷移數(shù)目就越多,電導(dǎo)率就越高。電導(dǎo)率高,離子傳導(dǎo)速率越快,所受極化就越小,在低溫下電池的性能表現(xiàn)越好。因此較高的電導(dǎo)率是實(shí)現(xiàn)鋰離子蓄電池良好低溫性能的必要條件。

  電解液的電導(dǎo)率與電解液的組成成分有關(guān),減小溶劑的粘度是提高電解液電導(dǎo)率的途徑之一。溶劑低溫下溶劑良好的流動(dòng)性是離子運(yùn)輸?shù)谋U希蜏叵码娊庖涸谪?fù)極所形成的固體電解質(zhì)膜也是影響鋰離子傳導(dǎo)的關(guān)鍵,且RSEI為鋰離子電池在低溫環(huán)境下的主要阻抗。

  專家觀點(diǎn)二:限制鋰離子電池低溫性能的主要因素是低溫下急劇增加的Li+擴(kuò)散阻抗,而并非SEI膜。

  鋰離子電池正極材料的低溫特性

  1、層狀結(jié)構(gòu)正極材料的低溫特性

  層狀結(jié)構(gòu),既擁有一維鋰離子擴(kuò)散通道所不可比擬的倍率性能,又擁有三維通道的結(jié)構(gòu)穩(wěn)定性,是最早商用的鋰離子電池正極材料。其代表性物質(zhì)有LiCoO2、Li(Co1-xNix)O2和Li(Ni,Co,Mn)O2等。

  謝曉華等以LiCoO2/MCMB為研究對(duì)象,測(cè)試了其低溫充放電特性。結(jié)果顯示,隨著溫度的降低,其放電平臺(tái)由3.762V(0℃)下降到3.207V(-30℃);其電池總?cè)萘恳灿?8.98mA·h(0℃)銳減到68.55mA·h(-30℃)。

  2、尖晶石結(jié)構(gòu)正極材料的低溫特性

  尖晶石結(jié)構(gòu)LiMn2O4正極材料,由于不含Co元素,故而具有成本低、無毒性的優(yōu)勢(shì)。

  然而,Mn價(jià)態(tài)多變和Mn3+的Jahn-Teller效應(yīng),導(dǎo)致該組分存在著結(jié)構(gòu)不穩(wěn)定和可逆性差等問題。

  彭正順等指出,不同制備方法對(duì)LiMn2O4正極材料的電化學(xué)性能影響較大,以Rct為例:高溫固相法合成的LiMn2O4的Rct明顯高于溶膠凝膠法合成的,且這一現(xiàn)象在鋰離子擴(kuò)散系數(shù)上也有所體現(xiàn)。究其原因,主要是由于不同合成方法對(duì)產(chǎn)物結(jié)晶度和形貌影響較大。

  3、磷酸鹽體系正極材料的低溫特性

  LiFePO4因絕佳的體積穩(wěn)定性和安全性,和三元材料一起,成為目前動(dòng)力電池正極材料的主體。磷酸鐵鋰低溫性能差主要是因?yàn)槠洳牧媳旧頌榻^緣體,電子導(dǎo)電率低,鋰離子擴(kuò)散性差,低溫下導(dǎo)電性差,使得電池內(nèi)阻增加,所受極化影響大,電池充放電受阻,因此低溫性能不理想。

  谷亦杰等在研究低溫下LiFePO4的充放電行為時(shí)發(fā)現(xiàn),其庫(kù)倫效率從55℃的100%分別下降到0℃時(shí)的96%和-20℃時(shí)的64%;放電電壓從55℃時(shí)的3.11V遞減到-20℃時(shí)的2.62V。

  Xing等利用納米碳對(duì)LiFePO4進(jìn)行改性,發(fā)現(xiàn),添加納米碳導(dǎo)電劑后,LiFePO4的電化學(xué)性能對(duì)溫度的敏感性降低,低溫性能得到改善;改性后LiFePO4的放電電壓從25℃時(shí)的3.40V下降到-25℃時(shí)的3.09V,降低幅度僅為9.12%;且其在-25℃時(shí)電池效率為57.3%,高于不含納米碳導(dǎo)電劑的53.4%。

  近來,LiMnPO4引起了人們濃厚的興趣。研究發(fā)現(xiàn),LiMnPO4具有高電位(4.1V)、無污染、價(jià)格低、比容量大(170mAh/g)等優(yōu)點(diǎn)。然而,由于LiMnPO4比LiFePO4更低的離子電導(dǎo)率,故在實(shí)際中常常利用Fe部分取代Mn形成LiMn0.8Fe0.2PO4固溶體。

  鋰離子電池負(fù)極材料的低溫特性

  相對(duì)于正極材料而言,鋰離子電池負(fù)極材料的低溫惡化現(xiàn)象更為嚴(yán)重,主要有以下3個(gè)原因:

  1、低溫大倍率充放電時(shí)電池極化嚴(yán)重,負(fù)極表面金屬鋰大量沉積,且金屬鋰與電解液的反應(yīng)產(chǎn)物一般不具有導(dǎo)電性;

  2、從熱力學(xué)角度,電解液中含有大量C-O、C-N等極性基團(tuán),能與負(fù)極材料反應(yīng),所形成的SEI膜更易受低溫影響;

  3、碳負(fù)極在低溫下嵌鋰?yán)щy,存在充放電不對(duì)稱性。

  低溫電解液的研究

  電解液在鋰離子電池中承擔(dān)著傳遞 Li+ 的作用,其離子電導(dǎo)率和 SEI 成膜性能對(duì)電池低溫性能影響顯著。判斷低溫用電解液優(yōu)劣,有3個(gè)主要指標(biāo):離子電導(dǎo)率、電化學(xué)窗口和電極反應(yīng)活性。而這3個(gè)指標(biāo)的水平,在很大程度上取決于其組成材料:溶劑、電解質(zhì)(鋰鹽)、添加劑。因此,電解液的各部分低溫性能的研究,對(duì)理解和改善電池的低溫性能,具有重要的意義。

  1、EC基電解液低溫特性相比鏈狀碳酸酯而言,環(huán)狀碳酸酯結(jié)構(gòu)緊密、作用力大,具有較高的熔點(diǎn)和黏度。但是、環(huán)狀結(jié)構(gòu)帶來的大的極性,使其往往具有很大的介電常數(shù)。EC溶劑的大介電常數(shù)、高離子導(dǎo)電率、絕佳成膜性能,有效防止溶劑分子共插入,使其具有不可或缺的地位,所以,常用低溫電解液體系大都以EC為基,再混合低熔點(diǎn)的小分子溶劑。

  2、鋰鹽是電解液的重要組成。鋰鹽在電解液中不僅能夠提高溶液的離子電導(dǎo)率,還能降低 Li+ 在溶液中的擴(kuò)散距離。一般而言,溶液中的Li+濃度越大,其離子電導(dǎo)率也越大。但電解液中的鋰離子濃度與鋰鹽的濃度并非呈線性相關(guān),而是呈拋物線狀。這是因?yàn)?,溶劑中鋰離子濃度取決于鋰鹽在溶劑中的離解作用和締合作用的強(qiáng)弱。

  低溫電解液的研究

  除電池組成本身外,在實(shí)際操作中的工藝因素, 也會(huì)對(duì)電池性能產(chǎn)生很大影響。

  1、 制備工藝

  Yaqub等研究了電極荷載及涂覆厚度對(duì) LiNi0.6Co0.2Mn0.2O2 /Graphite電池低溫性能的影響發(fā)現(xiàn),就容量保持率而言,電極荷載越小,涂覆層越薄,其低溫性能越好。

  2、 充放電狀態(tài)

  Petzl 等研究了低溫充放電狀態(tài)對(duì)電池循環(huán)壽命的影響發(fā)現(xiàn)放電深度較大時(shí),會(huì)引起較大的容量損失,且降低循環(huán)壽命。

  3、 其它因素

  電極的表面積、孔徑、電極密度、電極與電解液的潤(rùn)濕性及隔膜等,均影響著鋰離子電池的低溫性能。另外,材料和工藝的缺陷對(duì)電池低溫性能的影響也不容忽視。

  所以,為保證鋰離子電池的低溫性能,需要做好以下幾點(diǎn):

  (1) 形成薄而致密的SEI膜;

  (2) 保證 Li+在活性物質(zhì)中具有較大的擴(kuò)散系數(shù);

  (3) 電解液在低溫下具有高的離子電導(dǎo)率。

  此外,研究中還可另辟蹊徑,將目光投向另一類鋰離子電池——全固態(tài)鋰離子電池。相較常規(guī)的鋰離子電池而言,全固態(tài)鋰離子電池,尤其是全固態(tài)薄膜鋰離子電池,有望徹底解決電池在低溫下使用的容量衰減問題和循環(huán)安全問題。

  那么,冬季如何正確對(duì)待鋰電池?

  1、請(qǐng)勿在低溫環(huán)境下使用鋰電池

  溫度對(duì)于鋰電池的影響還是很大的,溫度越低鋰電池的活性就越低,直接導(dǎo)致充放電效率大幅降低,所一般而言,鋰電池的工作溫度為-20度-60度之間。

  當(dāng)溫度低于0℃時(shí),注意不要在室外充電,你充了也充不進(jìn)去,我們可以將電池拿到室內(nèi)進(jìn)行充電(注意,一定遠(yuǎn)離易燃物!!!),當(dāng)溫度低于-20℃,電池會(huì)自動(dòng)進(jìn)入休眠狀態(tài),無法正常使用。所以北方尤為寒冷地方的用戶。

  實(shí)在沒有室內(nèi)充電條件的,要充分利用電池放電時(shí)的余熱,停車后立即在陽(yáng)光下充電,以增加充電量,并避免析鋰。

  2、養(yǎng)成隨用隨充的習(xí)慣

  冬季,當(dāng)電池電量過低時(shí),我們要做到及時(shí)充電,養(yǎng)成隨用隨充的好習(xí)慣,記住,永遠(yuǎn)不要按照正常的電池續(xù)航去預(yù)估冬季電池電量。

  冬天鋰電池活性下降,非常容易造成過放過充,輕則影響電池使用壽命,重則引發(fā)燃燒事故。因此,冬天更要注意以淺放淺充的方式充電。特別需要指出的是,不要以一直充電的方式長(zhǎng)時(shí)間停放車輛,避免過充。

  3、充電時(shí)請(qǐng)勿遠(yuǎn)離切記不要長(zhǎng)時(shí)間充電

  不要為了圖方便,將車輛長(zhǎng)期處于充電狀態(tài),做到充滿即拔就可以。冬季充電環(huán)境不要低于0℃,充電時(shí),不要離開太遠(yuǎn),以防突發(fā)情況發(fā)生,及時(shí)處理。

  4、充電時(shí)使用鋰電池專用充電器

  市場(chǎng)上充斥著大量的劣質(zhì)充電器,使用劣質(zhì)充電器會(huì)造成電池?fù)p壞,甚至引起火災(zāi)。不要貪圖便宜購(gòu)買低價(jià)無保障產(chǎn)品,更不要使用鉛酸電池充電器;如果你的充電器不能正常使用,立即停止使用,切莫因小失大。

  5、注意電池壽命,適時(shí)換新

  鋰電池都有壽命,不同規(guī)格型號(hào)電池壽命不同,加上日常使用方式不當(dāng),電池的壽命幾個(gè)月到三年不等,如果車子出現(xiàn)斷電或是續(xù)航異常短,不能充電放電時(shí)候請(qǐng)及時(shí)聯(lián)系鋰電池維修人員處理。

  6、留有余電好過冬

  為了來年春天能正常使用車輛,如果長(zhǎng)期不用電池,記得充入50%——80%的電量,并且從車上卸下存放,并做到定期充電,大概一個(gè)月一充。注意:電池存放一定要放在干燥的環(huán)境下哦。

  7、正確放置電池

  不要將電池浸入水中,或者使電池潮濕;不要將電池疊放超過7層,或者倒置電池方向。

鋰電池

【免責(zé)聲明】此文章僅供讀者作為參考,并請(qǐng)自行承擔(dān)全部責(zé)任。出于傳遞給讀者更多信息之目的,并不意味著贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性。如轉(zhuǎn)載稿件涉及版權(quán)等問題,請(qǐng)?jiān)趦芍軆?nèi)來電或來函與長(zhǎng)江有色金屬網(wǎng)聯(lián)系。